Skip to content

Bouchet

Edward Bouchet

The Bouchet HPC cluster is YCRC's first installation at Massachusetts High Performance Computing Center (MGHPCC). Bouchet contains approximately 10,000 direct-liquid-cooled cores as well as 80 NVIDIA H200 GPUs from the AI Initiative and 48 NVIDIA A5000Ada GPUs. Bouchet is composed of 64 core nodes each with 1TB of RAM for general purpose compute and 4TB RAM large memory nodes for memory intensive workloads. Bouchet also has a dedicated “mpi” partition specifically designed for tightly-coupled parallel workloads. Bouchet is named for Dr. Edward Bouchet (1852-1918), the first self-identified African American to earn a doctorate from an American university, a PhD in physics at Yale University in 1876.


Announcing the Bouchet HPC Cluster

Bouchet In Production

The Bouchet HPC cluster, including GPUs from the AI Initiative, is now available to all Yale Researchers.

Bouchet is the successor to both Grace and McCleary, with the majority of HPC infrastructure refreshes and growth deployed at MGHPCC going forward. As the YCRC transitions from the Yale West Campus Data Center to the MGHPCC, we will be decommissioning Grace and McCleary in 2026 and all workloads on those systems be moved to Bouchet. All new YCRC purchases (such as the annual compute refresh or the Provost’s AI Initiative GPUs) will be installed at MGHPCC. In 2026, the older equipment on Grace and McCleary will be retired and most compute resources still under warranty will be added to Bouchet. More information about the decommission of Grace and McCleary will be provided soon. We will be engaging with faculty and users to ensure a smooth transition and minimize disruptions to critical work.

We welcome any researchers to move their workloads to Bouchet at their convenience between now and then to take advantage of Bouchet’s newer, faster and more powerful computing resources. YCRC staff is available to assist (you can contact us as always at hpc@yale.edu) and we will be hosting “Transitioning to Bouchet” information sessions later on this summer.

Access the Cluster

Get Started on Bouchet

Please see the Bouchet Getting Started for more information on key differences about Bouchet compared to Grace and McCleary.

Once you have an account, the cluster can be accessed via ssh or Open OnDemand at https://ood-bouchet.ycrc.yale.edu.

System Status and Monitoring

For system status messages and the schedule for upcoming maintenance, please see the system status page. For a current node-level view of job activity, see the cluster monitor page (VPN only).

Installed Applications

A large number of software and applications are installed on our clusters. These are made available to researchers via software modules.

Available Software Modules (click to expand)
Package Versions
APR 1.7.5
APR-util 1.6.3
ATK 2.38.0
Armadillo 11.4.3
Autoconf 2.71,2.72
Automake 1.16.5,1.16.5
Autotools 20220317,20231222
AxiSEM3D 2024Oct16
BLIS 0.9.0
BeautifulSoup 4.11.1
Bison 3.8.2,3.8.2,3.8.2
Boost 1.81.0,1.81.0
Brotli 1.0.9
Brunsli 0.1
CESM 2.1.3,2.1.3
CESM-deps 2,2
CFITSIO 4.2.0
CMake 3.24.3
CP2K 2023.1
CUDA 12.1.1
Check 0.15.2
DB 18.1.40
DBus 1.15.2
Doxygen 1.9.5
ELPA 2022.05.001
ESMF 8.3.0,8.3.0
EasyBuild 4.9.3,4.9.4
Eigen 3.4.0
FFTW 2.1.5,2.1.5,3.3.10,3.3.10
FFTW.MPI 3.3.10
FFmpeg 5.1.2
FHI-aims 231212_1
FLAC 1.4.2
FlexiBLAS 3.2.1
FriBidi 1.0.12
GCC 12.2.0
GCCcore 12.2.0,13.3.0
GDAL 3.6.2
GDRCopy 2.3.1
GEOS 3.11.1
GLPK 5.0
GLib 2.75.0
GMP 6.2.1
GObject-Introspection 1.74.0
GROMACS 2023.3
GSL 2.7
GTK3 3.24.35
Gdk-Pixbuf 2.42.10
Ghostscript 10.0.0
HDF 4.2.15
HDF5 1.14.0,1.14.0,1.14.0
HPCG 3.1
HPL 2.3
HarfBuzz 5.3.1
Highway 1.0.3
ICU 72.1
IOR 4.0.0,4.0.0
IPython 8.14.0
ImageMagick 7.1.0
Imath 3.1.6
JasPer 4.0.0
Java 11.0.16
Julia 1.10.4
JupyterLab 4.0.3
JupyterNotebook 7.0.3
LAME 3.100
LAMMPS 2Aug2023
LERC 4.0.0
LLVM 15.0.5
LibTIFF 4.4.0
Libint 2.7.2
LittleCMS 2.14
M4 1.4.19,1.4.19,1.4.19
MATLAB 2023b
MDI 1.4.16
METIS 5.1.0
MPFR 4.2.0
Mako 1.2.4
Mesa 22.2.4
Meson 0.64.0
NASM 2.15.05
NLopt 2.7.1
Ninja 1.11.1
OSU-Micro-Benchmarks 6.2
OpenBLAS 0.3.21
OpenEXR 3.1.5
OpenJPEG 2.5.0
OpenMPI 4.1.4,4.1.4
OpenPGM 5.2.122
OpenSSL 1.1
PBZIP2 1.1.13
PCRE 8.45
PCRE2 10.40
PLUMED 2.9.2
PROJ 9.1.1
Pango 1.50.12
Perl 5.36.0,5.38.2
PnetCDF 1.13.0,1.13.0
PostgreSQL 15.2
PyYAML 6.0
Python 3.10.8,3.10.8
Qhull 2020.2
QuantumESPRESSO 7.2
R 4.4.1
R-bundle-CRAN 2024.06
Rust 1.65.0
SCons 4.5.2
SDL2 2.26.3
SQLite 3.39.4
SWIG 4.1.1
ScaFaCoS 1.0.4
ScaLAPACK 2.2.0
SciPy-bundle 2023.02
Serf 1.3.9
Subversion 1.14.3
Szip 2.1.1
Tcl 8.6.12
Tk 8.6.12
TotalView 2023.3.10
UCC 1.1.0
UCX 1.13.1,1.16.0
UCX-CUDA 1.13.1
UDUNITS 2.2.28
UnZip 6.0
VASP 6.4.2
VTK 9.2.6
Voro++ 0.4.6
Wannier90 3.1.0
X11 20221110
XML-LibXML 2.0208
XZ 5.2.7
Xerces-C++ 3.2.4
Xvfb 21.1.6
Yasm 1.3.0
ZeroMQ 4.3.4
archspec 0.2.0
arpack-ng 3.8.0
at-spi2-atk 2.38.0
at-spi2-core 2.46.0
awscli 2.17.51
binutils 2.39,2.39,2.42,2.42
bzip2 1.0.8
cURL 7.86.0
cairo 1.17.4
elbencho 2.0,3.0
expat 2.4.9
ffnvcodec 11.1.5.2
fio 3.34
flex 2.6.4,2.6.4,2.6.4
fontconfig 2.14.1
foss 2022b
freetype 2.12.1
gettext 0.21.1,0.21.1
gfbf 2022b
giflib 5.2.1
git 2.38.1
gompi 2022b
googletest 1.12.1
gperf 3.1
groff 1.22.4
gzip 1.12
h5py 3.8.0
help2man 1.49.2,1.49.3
hwloc 2.8.0
hypothesis 6.68.2
iimpi 2022b,2024a
imkl 2022.2.1,2024.2.0
imkl-FFTW 2022.2.1,2024.2.0
impi 2021.7.1,2021.13.0
intel 2022b,2024a
intel-compilers 2022.2.1,2024.2.0
intltool 0.51.0
iomkl 2022b
iompi 2022b
jbigkit 2.1
json-c 0.16
jupyter-server 2.7.0
kim-api 2.3.0
lftp 4.9.2
libGLU
libaio
libarchive
libdeflate
libdrm
libepoxy
libfabric
libffi
libgeotiff
libgit2
libglvnd
libiconv
libjpeg-turbo
libogg
libopus
libpciaccess
libpng
libreadline
libsndfile
libsodium
libtirpc
libtool
libunwind
libvorbis
libvori
libxc
libxml2
libxslt
libxsmm
libyaml
lxml 4.9.2
lz4 1.9.4
make 4.3
maturin 1.1.0
miniconda 24.7.1
mpi4py 3.1.4
ncurses 6.3,6.3
netCDF 4.9.0,4.9.0,4.9.0
netCDF-C++4 4.3.1,4.3.1
netCDF-Fortran 4.6.0,4.6.0
nettle 3.8.1
networkx 3.0
nlohmann_json 3.11.2
nodejs 18.12.1,20.11.1
numactl 2.0.16,2.0.18
patchelf 0.17.2
pigz 2.7
pixman 0.42.2
pkg-config 0.29.2
pkgconf 1.8.0,1.9.3,2.2.0
pkgconfig 1.5.5
pybind11 2.10.3
ruamel.yaml 0.17.21
scikit-build 0.17.2
tbb 2021.10.0
utf8proc 2.8.0
util-linux 2.38.1
x264 20230226
x265 3.5
xorg-macros 1.19.3
xxd 9.0.1696
zlib 1.2.12,1.2.12,1.3.1,1.3.1
zstd 1.5.2

Partitions and Hardware

Public Partitions

See each tab below for more information about the available common use partitions.

Use the day partition for most batch jobs. This is the default if you don't specify one with --partition.

Request Defaults

Unless specified, your jobs will run with the following options to salloc and sbatch options for this partition.

--time=01:00:00 --nodes=1 --ntasks=1 --cpus-per-task=1 --mem-per-cpu=5120

Job Limits

Jobs submitted to the day partition are subject to the following limits:

Limit Value
Maximum CPUs per group 2000
Maximum memory per group 30000G
Maximum CPUs per user 1000
Maximum memory per user 15000G

Available Compute Nodes

Requests for --cpus-per-task and --mem can't exceed what is available on a single compute node.

Count CPU Type CPUs/Node Memory/Node (GiB) Node Features
46 cpugen:emeraldrapids 64 990 cpugen:emeraldrapids, cpumodel:8562Y+, common:yes

Use the devel partition to jobs with which you need ongoing interaction. For example, exploratory analyses or debugging compilation.

Request Defaults

Unless specified, your jobs will run with the following options to salloc and sbatch options for this partition.

--time=01:00:00 --nodes=1 --ntasks=1 --cpus-per-task=1 --mem-per-cpu=5120

Job Limits

Jobs submitted to the devel partition are subject to the following limits:

Limit Value
Maximum job time limit 06:00:00
Maximum CPUs per user 32
Maximum submitted jobs per user 2

Available Compute Nodes

Requests for --cpus-per-task and --mem can't exceed what is available on a single compute node.

Count CPU Type CPUs/Node Memory/Node (GiB) Node Features
2 cpugen:emeraldrapids 64 990 cpugen:emeraldrapids, cpumodel:8562Y+, common:yes

Use the gpu partition for jobs that make use of GPUs. You must request GPUs explicitly with the --gpus option in order to use them. For example, --gpus=rtx_5000_ada:2 would request 2 NVIDIA RTX 5000 Ada GPUs per node.

Request Defaults

Unless specified, your jobs will run with the following options to salloc and sbatch options for this partition.

--time=01:00:00 --nodes=1 --ntasks=1 --cpus-per-task=1 --mem-per-cpu=5120

GPU jobs need GPUs!

Jobs submitted to this partition do not request a GPU by default. You must request one with the --gpus option.

Job Limits

Jobs submitted to the gpu partition are subject to the following limits:

Limit Value
Maximum job time limit 2-00:00:00
Maximum GPUs per user 16

Available Compute Nodes

Requests for --cpus-per-task and --mem can't exceed what is available on a single compute node.

Count CPU Type CPUs/Node Memory/Node (GiB) GPU Type GPUs/Node vRAM/GPU (GB) Node Features
10 cpugen:emeraldrapids 48 479 rtx_5000_ada 4 32 cpugen:emeraldrapids, cpumodel:6542Y, common:yes, gpu:rtx_5000_ada

Use the gpu partition for jobs that make use of GPUs. You must request GPUs explicitly with the --gpus option in order to use them. For example, --gpus=h200:2 would request 2 NVIDIA H200 GPUs per node.

Request Defaults

Unless specified, your jobs will run with the following options to salloc and sbatch options for this partition.

--time=01:00:00 --nodes=1 --ntasks=1 --cpus-per-task=1 --mem-per-cpu=5120

GPU jobs need GPUs!

Jobs submitted to this partition do not request a GPU by default. You must request one with the --gpus option.

Job Limits

Jobs submitted to the gpu_h200 partition are subject to the following limits:

Limit Value
Maximum job time limit 2-00:00:00
Maximum GPUs per user 16

Available Compute Nodes

Requests for --cpus-per-task and --mem can't exceed what is available on a single compute node.

Count CPU Type CPUs/Node Memory/Node (GiB) GPU Type GPUs/Node vRAM/GPU (GB) Node Features
10 cpugen:emeraldrapids 48 1995 h200 8 141 cpugen:emeraldrapids, cpumodel:6542Y, gpu:h200, common:yes

Use the gpu_devel partition to debug jobs that make use of GPUs, or to develop GPU-enabled code.

Request Defaults

Unless specified, your jobs will run with the following options to salloc and sbatch options for this partition.

--time=01:00:00 --nodes=1 --ntasks=1 --cpus-per-task=1 --mem-per-cpu=5120

GPU jobs need GPUs!

Jobs submitted to this partition do not request a GPU by default. You must request one with the --gpus option.

Job Limits

Jobs submitted to the gpu_devel partition are subject to the following limits:

Limit Value
Maximum job time limit 06:00:00
Maximum GPUs per user 4
Maximum submitted jobs per user 2

Available Compute Nodes

Requests for --cpus-per-task and --mem can't exceed what is available on a single compute node.

Count CPU Type CPUs/Node Memory/Node (GiB) GPU Type GPUs/Node vRAM/GPU (GB) Node Features
2 cpugen:emeraldrapids 48 479 rtx_5000_ada 4 32 cpugen:emeraldrapids, cpumodel:6542Y, common:yes, gpu:rtx_5000_ada

Use the bigmem partition for jobs that have memory requirements other partitions can't handle.

Request Defaults

Unless specified, your jobs will run with the following options to salloc and sbatch options for this partition.

--time=01:00:00 --nodes=1 --ntasks=1 --cpus-per-task=1 --mem-per-cpu=5120

Job Limits

Jobs submitted to the bigmem partition are subject to the following limits:

Limit Value
Maximum CPUs per user 64
Maximum memory per user 4000G

Available Compute Nodes

Requests for --cpus-per-task and --mem can't exceed what is available on a single compute node.

Count CPU Type CPUs/Node Memory/Node (GiB) Node Features
4 cpugen:emeraldrapids 64 4014 cpugen:emeraldrapids, cpumodel:8562Y+, common:yes

Use the mpi partition for tightly-coupled parallel programs that make efficient use of multiple nodes. See our MPI documentation if your workload fits this description.

Request Defaults

Unless specified, your jobs will run with the following options to salloc and sbatch options for this partition.

--time=01:00:00 --nodes=1 --ntasks=1 --cpus-per-task=1 --exclusive --mem=498688

Job Limits

Jobs submitted to the mpi partition are subject to the following limits:

Limit Value
Maximum job time limit 2-00:00:00
Maximum nodes per group 32
Maximum nodes per user 32

Available Compute Nodes

Requests for --cpus-per-task and --mem can't exceed what is available on a single compute node.

Count CPU Type CPUs/Node Memory/Node (GiB) Node Features
60 cpugen:emeraldrapids 64 487 cpugen:emeraldrapids, cpumodel:8562Y+, common:yes
48 cpugen:emeraldrapids 64 990 cpugen:emeraldrapids, cpumodel:8562Y+, common:yes

Storage

Bouchet has access to one filesystem called Roberts. Roberts is an all-flash, NFS filesystem similar to the Palmer filesystem on Grace and McCleary. For more details on the different storage spaces, see our Cluster Storage documentation.

Your ~/project_pi_<netid of the pi> and ~/scratch_pi_<netid of the pi> directories are shortcuts. Get a list of the absolute paths to your directories with the mydirectories command. If you want to share data in your Project or Scratch directory, see the permissions page.

For information on data recovery, see the Backups and Snapshots documentation.

Warning

Files stored in scratch are purged if they are older than 60 days. You will receive an email alert one week before they are deleted. Artificial extension of scratch file expiration is forbidden without explicit approval from the YCRC. Please purchase storage if you need additional longer term storage.

Partition Root Directory Storage File Count Backups Snapshots Notes
home /home 125GiB/user 500,000 Not yet >=2 days
project /nfs/roberts/project 4TiB/group 5,000,000 No >=2 days
scratch /nfs/roberts/scratch 10TiB/group 15,000,000 No No

Last update: July 3, 2025